Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Trop Med Infect Dis ; 7(11)2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2110265

ABSTRACT

This modeling study considers different screening strategies, contact tracing, and the severity of novel epidemic outbreaks for various population sizes, providing insight into multinational containment effectiveness of emerging infectious diseases, prior to vaccines development. During the period of the ancestral SARS-Cov-2 virus, contact tracing alone is insufficient to achieve outbreak control. Although universal testing is proposed in multiple nations, its effectiveness accompanied by other measures is rarely examined. Our research investigates the necessity of universal testing when contact tracing and symptomatic screening measures are implemented. We used a stochastic transmission model to simulate COVID-19 transmission, evaluating containment strategies via contact tracing, one-time high risk symptomatic testing, and universal testing. Despite universal testing having the potential to identify subclinical cases, which is crucial for non-pharmaceutical interventions, our model suggests that universal testing only reduces the total number of cases by 0.0009% for countries with low COVID-19 prevalence and 0.025% for countries with high COVID-19 prevalence when rigorous contact tracing and symptomatic screening are also implemented. These findings highlight the effectiveness of testing strategies and contact tracing in reducing COVID-19 cases by identifying subclinical cases.

2.
Contemp Clin Trials ; 96: 106101, 2020 09.
Article in English | MEDLINE | ID: covidwho-696835

ABSTRACT

The control strategies preventing subclinical transmission differed among countries. A stochastic transmission model was used to assess the potential effectiveness of control strategies at controlling the COVID-19 outbreak. Three strategies included lack of prevention of subclinical transmission (Strategy A), partial prevention using testing with different accuracy (Strategy B) and complete prevention by isolating all at-risk people (Strategy C, Taiwan policy). The high probability of containing COVID-19 in Strategy C is observed in different scenario, had varied in the number of initial cases (5, 20, and 40), the reproduction number (1.5, 2, 2.5, and 3.5), the proportion of at-risk people being investigated (40%, 60%, 80%, to 90%), the delay from symptom onset to isolation (long and short), and the proportion of transmission that occurred before symptom onset (<1%, 15%, and 30%). Strategy C achieved probability of 80% under advantageous scenario, such as low number of initial cases and high coverage of epidemiological investigation but Strategy B and C rarely achieved that of 60%. Considering the unsatisfactory accuracy of current testing and insufficient resources, isolation of all at-risk people, as adopted in Taiwan, could be an effective alternative.


Subject(s)
Asymptomatic Infections/epidemiology , Communicable Disease Control , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Humans , Infectious Disease Incubation Period , Models, Theoretical , Pandemics/prevention & control , Patient Isolation , Pneumonia, Viral/prevention & control , Quarantine , SARS-CoV-2 , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL